Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Eur J Immunol ; 53(4): e2250206, 2023 04.
Article in English | MEDLINE | ID: covidwho-2208972

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still poses a challenge for biomedicine and public health. To advance the development of effective diagnostic, prognostic, and preventive interventions, our study focused on high-throughput antibody binding epitope mapping of the SARS-CoV-2 spike RBD protein by IgA, IgM and IgG antibodies in saliva and sera of different cohorts from healthy uninfected individuals to SARS-CoV-2-infected unvaccinated and vaccinated asymptomatic, recovered, nonsevere, and severe patients. Identified candidate diagnostic (455-LFRKSNLKPFERD-467), prognostic (395-VYADSFVIRGDEV-407-C-KLH, 332-ITNLCPFGEV-342-C-KLH, 352-AWNRKRI-358-C-KLH, 524-VCGPKKSTNLVKN-536-KLH), and protective (MKLLE-487-NCYFPLQSYGFQPTNGVG-504-GGGGS-446-GGNYNYLYRLFRKSNLKPFERD-467) epitopes were validated with sera from prevaccine and postvaccine cohorts. The results identified neutralizing epitopes and support that antibody recognition of linear B-cell epitopes in RBD protein is associated with antibody isotype and disease symptomatology. The findings in asymptomatic individuals suggest a role for anti-RBD antibodies in the protective response against SARS-CoV-2. The possibility of translating results into diagnostic interventions for the early diagnosis of asymptomatic individuals and prognosis of disease severity provides new tools for COVID-19 surveillance and evaluation of risks in hospitalized patients. These results, together with other approaches, may contribute to the development of new vaccines for the control of COVID-19 and other coronavirus-related diseases using a quantum vaccinomics approach through the combination of protective epitopes.


Subject(s)
COVID-19 , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , Epitope Mapping , Epitopes, B-Lymphocyte , SARS-CoV-2
2.
Molecules ; 27(18)2022 Sep 13.
Article in English | MEDLINE | ID: covidwho-2033065

ABSTRACT

In the last two years, the coronavirus disease 19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a scientific and social challenge worldwide. Vaccines have been the most effective intervention for reducing virus transmission and disease severity. However, genetic virus variants are still circulating among vaccinated individuals with different disease symptomatology. Understanding the protective- or disease-associated mechanisms in vaccinated individuals is relevant to advances in vaccine development and implementation. To address this objective, serum-protein profiles were characterized by quantitative proteomics and data-analysis algorithms in four cohorts of uninfected and SARS-CoV-2-infected vaccinated individuals with asymptomatic, non-severe, and severe disease symptomatology. The results show that immunoglobulins were the most overrepresented proteins in infected cohorts when compared to PCR-negative individuals. The immunoglobulin profile varied between different infected cohorts and correlated with protective- or disease-associated capacity. Overrepresented immunoglobulins in PCR-positive individuals correlated with protective response against SARS-CoV-2, other viruses, and thrombosis in asymptomatic cases. In non-severe cases, correlates of protection against SARS-CoV-2 and HBV together with risk of myasthenia gravis and allergy and autoantibodies were observed. Patients with severe symptoms presented risk for allergy, chronic idiopathic thrombocytopenic purpura, and autoantibodies. The analysis of underrepresented immunoglobulins in PCR-positive compared to PCR-negative individuals identified vaccine-induced protective epitopes in various coronavirus proteins, including the spike receptor-binding domain RBD. Non-immunoglobulin proteins were associated with COVID-19 symptoms and biological processes. These results evidence host-associated differences in response to vaccination and the possibility of improving vaccine efficacy against SARS-CoV-2.


Subject(s)
COVID-19 , Hypersensitivity , Viral Vaccines , Autoantibodies , COVID-19/prevention & control , Epitopes , Humans , Proteomics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
3.
Front Immunol ; 12: 730710, 2021.
Article in English | MEDLINE | ID: covidwho-1441108

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 challenges the understanding of factors affecting disease progression and severity. The identification of prognostic biomarkers and physiological processes associated with disease symptoms is relevant for the development of new diagnostic and therapeutic interventions to contribute to the control of this pandemic. To address this challenge, in this study, we used a quantitative proteomics together with multiple data analysis algorithms to characterize serum protein profiles in five cohorts from healthy to SARS-CoV-2-infected recovered (hospital discharge), nonsevere (hospitalized), and severe [at the intensive care unit (ICU)] cases with increasing systemic inflammation in comparison with healthy individuals sampled prior to the COVID-19 pandemic. The results showed significantly dysregulated proteins and associated biological processes and disorders associated to COVID-19. These results corroborated previous findings in COVID-19 studies and highlighted how the representation of dysregulated serum proteins and associated BPs increases with COVID-19 disease symptomatology from asymptomatic to severe cases. The analysis was then focused on novel disease processes and biomarkers that were correlated with disease symptomatology. To contribute to translational medicine, results corroborated the predictive value of selected immune-related biomarkers for disease recovery [Selenoprotein P (SELENOP) and Serum paraoxonase/arylesterase 1 (PON1)], severity [Carboxypeptidase B2 (CBP2)], and symptomatology [Pregnancy zone protein (PZP)] using protein-specific ELISA tests. Our results contributed to the characterization of SARS-CoV-2-host molecular interactions with potential contributions to the monitoring and control of this pandemic by using immune-related biomarkers associated with disease symptomatology.


Subject(s)
COVID-19/blood , COVID-19/immunology , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Aryldialkylphosphatase/blood , Biomarkers/blood , Carboxypeptidase B2/blood , Female , Humans , Interleukin-1/blood , Interleukin-4/blood , Male , Middle Aged , Pregnancy Proteins/blood , Prognosis , Proteome/analysis , Proteomics , Retrospective Studies , Selenoprotein P/blood
4.
Transbound Emerg Dis ; 68(3): 1487-1492, 2021 May.
Article in English | MEDLINE | ID: covidwho-745690

ABSTRACT

Since March 2020, Spain (along with many other countries) has been severely affected by the ongoing coronavirus disease 19 (COVID-19) pandemic caused by the rapid spread of a new virus (severe acute respiratory syndrome coronavirus 2; SARS-CoV-2). As part of global efforts to improve disease surveillance, we investigated how readily SARS-CoV-2 RNA could be detected in environmental samples collected from an isolated rural community in Spain with a high COVID-19 prevalence (6% of the population of 883 inhabitants). The first diagnosis of COVID-19-compatible symptoms in the village was recorded on 3 March 2020, and the last known active case resolved on 5 June 2020. By 15 May, two months after strict movement constraints were imposed ('lockdown'), and the cumulative number of symptomatic cases had increased to 53. Of those cases, 22 (41%) had been tested and confirmed by RT-PCR. On 13 May and 5 June, samples were collected from high-use surfaces and clothes in the homes of 13 confirmed cases, from surfaces in nine public service sites (e.g. supermarket and petrol station) and from the wastewater of the village sewage system. SARS-CoV-2 RNA was detected in 7 of 57 (12%) samples, including three households and three public sites. While there is not yet sufficient evidence to recommend environmental surveillance as a standard approach for COVID-19 epidemiology, environmental surveillance research may contribute to advance knowledge about COVID-19 by further elucidating virus shedding dynamics and environmental contamination, including the potential identification of animal reservoirs.


Subject(s)
COVID-19/epidemiology , Environmental Microbiology , Environmental Monitoring , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , Animals , COVID-19/virology , Communicable Disease Control , Humans , Prevalence , SARS-CoV-2/genetics , Spain/epidemiology , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL